Ocean fronts drive marine fishery production and biogeochemical cycling.
نویسندگان
چکیده
Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy-sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom-up vs. top-down regulation and high productivity in marine ecosystems.
منابع مشابه
Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling
We have extended the 3-D ocean based “Grid ENabled Integrated Earth system model” (GENIE-1) to help understand the role of ocean biogeochemistry and marine sediments in the long-term (∼100 to 100 000 year) regulation of atmospheric CO2, and the importance of feedbacks between CO2 and climate. Here we describe the ocean carbon cycle, which in its first incarnation is based around a simple single...
متن کاملMajor challenges confronting marine biogeochemical modeling
Substantial improvements are required in the current suite of numerical models if we are to better understand the present ocean biogeochemical state and predict potential future responses to anthropogenic perturbations. At present, major impediments to marine biogeochemical modeling include the inadequate representation of multi-element cycling and community structure, large-scale physical circ...
متن کاملThe impact of temperature on marine phytoplankton resource allocation and metabolism
Marine phytoplankton are responsible for ∼50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans1. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex en...
متن کاملImpacts of atmospheric nutrient inputs on marine biogeochemistry
[1] The primary nutrients that limit marine phytoplankton growth rates include nitrogen (N), phosphorus (P), iron (Fe), and silicon (Si). Atmospheric transport and deposition provides a source for each of these nutrients to the oceans. We utilize an ocean biogeochemical model to examine the relative importance of these atmospheric inputs for ocean biogeochemistry and export production. In the c...
متن کاملImpacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry
[1] We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 6 شماره
صفحات -
تاریخ انتشار 2015